摘要

为了更好地提高收敛的速度和精度,提出一种终态神经网络(TNN)及其加速形式(ATNN)的求解方法。该网络求解方法具有终态吸引特性,能够在有限的时间内得到时变矩阵的有效解。相比于具有渐近收敛动态特性的神经网络,该神经网络方法具有有限时间收敛性,不仅能够改变收敛速度,而且能达到较高的收敛精度。将3种不同的神经网络方法用于求解时变Sylvester动态方程;同时,以终态神经网络求解二次优化问题,实现冗余机械臂Katana6M180有限时间收敛的重复运动规划任务。仿真结果验证了终态神经网络方法的有效性。