摘要
针对目前提取呼吸波准确性不高的问题,本研究提出了一种从光电容积描记(photoplethysmography, PPG)信号中提取呼吸波的有效方法。在MIMIC Database中获取人体同时段的多路生理信号,包括PPG信号和呼吸波信号。首先,利用经验模态分解算法(empirical mode decomposition,EMD)对PPG信号进行分解,得到各层本征模函数(intrinsic mode function,IMF),选择合适的IMF分量重构出呼吸波信号;然后将重构的呼吸波信号与采用PPG信号同时段的原始呼吸波信号进行比较,结果显示,呼吸波信号速率的准确率均在90%以上,AR功率谱中的相关性系数均在85%以上,呼吸波信号相对相干系数也显示该方法的优越性。采用EMD算法可以有效地从PPG信号中提取呼吸波,这对于临床实践中的无创检测,医疗设备的改进具有重要意义。
-
单位桂林电子科技大学; 自动化学院