针对测量污水环境水参数化学需氧量(COD)难于测量的问题,提出了基于径向基网络的灰度理论预测模型(GM-RBF),对化学需氧量进行预测。利用灰度理论能对系统行为的发展变化进行预测的特点,结合径向基神经网络的高精度逼近能力,提高了预测模型的精度。研究了对污水处理过程关键水质参数的建模预测,实验证明该模型能以较高精度对COD进行预测,预测值最接近真实值,提供了可靠的COD参数值。