摘要

针对径向基神经网络结构和参数的动态优化问题,提出一种基于敏感度分析和粒子群优化的RBF神经网络(SAPSO-RBF)优化算法.算法通过初始化各粒子信息数,基于粒子敏感度分析,对算法学习阶段粒子信息进行增加和删减,确定第一次收敛时网络结构大小;算法达到收敛后,对最优粒子进行敏感度分析,删除冗余信息,使算法重新发散;根据算法发散和收敛次数提出一种惯性权重更新方法,使算法在解空间内进行多次发散和收敛,增强算法搜索能力的同时减小网络结构,并给出SAPSO算法的收敛性证明.仿真实验结果表明, SAPSO-RBF算法具有良好的自组织能力,相较于其他自组织RBF神经网络优化算法,在网络结构紧凑度和精度等方面有较大提升.

全文