摘要
针对现有图像超分辨率重建技术中存在的特征提取方式单一、中间层特征提取不充分等问题,提出了一种通道可分离残差网络。首先,利用多尺度卷积的思想设计出多分支卷积块,充分提取图像的低频信息;其次,利用通道压缩进行降维以精简特征信息,并引入坐标注意力机制对局部融合特征进行增强,通过长短跳跃连接,在加速收敛的同时使得主干网络专注于提取高频特征;最后通过上采样层重建出高分辨率图像。将本算法在Set5、Set14、BSD100和Urban100等4个超分辨率重建领域中公共数据集上进行对比分析,其中在2倍重建任务的Set5数据集上,与DBPN相比,参数量是它的2/5,PSNR和SSIM分别高出0.09 dB和0.001 6。实验结果表明,该算法对图像特征充分提取,以较少的参数量实现了与其他大型模型性能相近甚至更好的重建效果。
-
单位电子信息工程学院; 沈阳航空航天大学