摘要
为加强智慧教室中教学视频信息的有效运用,针对现有SSD算法的不足,提出改进SSD算法进行学生课堂行为状态识别的方法。结合K-means聚类算法对数据集进行聚类分析,在SSD网络预测层重新设置预测框比例及分布,增大训练时预测框和真实框的匹配度;引入目标检测焦点损失函数,保证正负样本及难易分类样本的平衡。在自制的听讲、睡觉、举手、回答及写字5种学生行为状态数据集上进行训练和测试,实验结果表明,改进的SSD算法对5种学生行为状态识别的平均精度均值达到95.4%,比原SSD算法提高了10.2%,同时适用于实时检测。
- 单位