为提高K-means算法全局搜索能力,提升聚类效果,提出一种基于近似骨架和混合蛙跳算法的K-means方法。该方法首先利用经典的混合蛙跳算法取代K-means算法中原有迭代公式,获得更优秀的聚类结果;然后对获得的聚类结果,使用基于近似骨架和混合蛙跳算法的K-means算法不寻找聚类中心,而是直接对簇的划分进行修改。UCI数据集实验结果表明,使用改进的聚类算法获得的聚类结果,较其他算法结果更为优秀。最后将改进后的聚类算法应用到医学眼底病历图像中,可以得到较好的血管切割效果。