摘要
针对粒子群算法和蜂群算法在寻优中存在的一些早熟和收敛速精度不高等问题,论文分别对粒子算法和蜂群算法的更新策略以及更新公式进行了改进,利用改进的粒子群算法和改进的蜂群算法同时对一个粒子位置进行部分算术更新的方法,提出了一种新混合的优化算法.并将其在12个多极值基准函数进行全局最优化测试,实验结果表明,笔者提出的混合优化算法收敛的速度和收敛精度大大提高了,其性大大优于改进的粒子群算法(CLPSO算法)和人工蜂群算法,对于高、低维复杂函数的优化均适用.
-
单位广西壮族自治区气象减灾研究所; 广西大学; 广西机电职业技术学院