摘要

对卷积神经网络(CNN)在工程结构损伤诊断中的应用进行了深入探讨;以多层框架结构节点损伤位置的识别问题为研究对象,构建了可以直接从结构动力反应信号中进行学习并完成分类诊断的基于原始信号和傅里叶频域信息的一维卷积神经网络模型和基于小波变换数据的二维卷积神经网络模型;从输入数据样本类别、训练时间、预测准确率、浅层与深层卷积神经网络以及不同损伤程度的影响等多方面进行了研究。结果表明:卷积神经网络能从结构动力反应信息中有效提取结构的损伤特征,且具有很高的识别精度;相比直接用加速度反应样本,使用傅里叶变换后的频域数据作为训练样本能使CNN的收敛速度更快、更稳定,并且深层CNN的性能要好于浅层CNN;将卷积神经网络用于工程结构损伤诊断具有可行性,特别是在大数据处理和解决复杂问题能力方面与其他传统诊断方法相比有很大优势,应用前景广阔。