摘要

针对由于复杂环境条件下的船舶噪声信号识别度低的问题,提出了一种改进的变分模式分解(Improved Variational Mode Decomposition, IVMD)、反向排列熵(Reverse Permutation Entropy, RPE)、加权排列熵(Weighted Permutation Entropy, WPE)和能量比相结合的船舶噪声信号识别分类方法。该方法利用IVMD将信号分解为若干本征模态函数(Intrinsic Mode Function, IMF);再利用RPE对IMF进行筛选,得到敏感IMF,实现去噪过程;最后计算IMF的WPE并与各个IMF的能量比构建特征向量,建立长短期记忆网络(Long Short-Term Memory,LSTM)进行识别分类。实验结果表明,与经验模态分解相比,文中提出的基于IVMD-RPE的船舶噪声信号去噪及特征提取方法能有效减少环境噪声的影响,提高信噪比,对船舶噪声目标信号识别分类的准确率更高。

全文