摘要

为了减少表情变化带来的影响,提出一种基于人脸几何特征和局部描述子的3维人脸识别算法.首先利用多尺度形状变化指数在3维人脸上检测出关键点.然后提出一种基于关键点的2步匹配算法,以提高识别算法的效率:第1步在关键点上提取3维法向量分布直方图描述子,将测试集人脸与库集人脸上的描述子进行匹配,除去匹配程度较低的一部分库集人脸,减少后续匹配的人脸数;第2步在关键点上提取协方差矩阵描述子,再将测试集人脸与剩余的库集人脸在给定的约束条件下进行协方差矩阵描述子匹配.最后用成功匹配的关键点个数衡量人脸的匹配程度,得到分类结果.在Bosphorus, FRGC v2.0和BU-3DFE数据库上进行实验的结果表明,文中算法取得了良好的识别效果,对3维人脸的表情变化有较好的鲁棒性,同时在识别速度上也优于已有的许多算法.