摘要

安全帽佩戴监控是铁路工程施工人员安全管理中的重点和难点,它对检测算法的准确率与检测速度都有较高的要求。本文提出一种基于神经网络架构搜索的安全帽佩戴检测算法NAS-YOLO。该神经网络架构由上、下行操作单元组成,采用二进制门策略对网络架构进行更新,通过数据驱动的方式自动确定合适的神经网络体系结构。实验结果表明,NAS-YOLO算法在准确率、召回率及平均检测速度方面均优于实时目标检测算法YOLOv3,可以在工程施工中对施工人员安全帽佩戴情况进行实时监控。

  • 单位
    通号工程局集团北京研究设计实验中心有限公司