摘要
局部聚合描述子向量(vector of locally aggregated descriptors, VLAD)是一种硬编码方式,会导致较大的量化损失。为了解决此问题,提出了一种基于内积加权的VLAD编码(inner product weighted vector of locally aggregated descriptors, IPWVLAD),它是一种软编码方式,为图像中的每个描述子寻找若干个近邻的基向量,并采用内积编码的方式生成权重信息添加到累积残差中。对于最近邻的基向量和描述子之间的残差给予最大的权重,对于次近邻的情况依次赋予越来越小的权重。在Corel 10、15 Scenes、UIUC Sport Events数据集上的实验结果表明,与已有的4种基于VLAD的方法和2种常用的表示方法相比,本文所提出的IPWVLAD编码获得了较好的分类性能。
-
单位南京邮电大学; 通信与信息工程学院