摘要

为了解决具有状态约束的机械臂的控制问题,本文针对一类具有全状态约束和状态不完全可测的切换严格反馈非线性系统进行研究,通过引入状态观测器、自适应神经网络和动态表面控制技术,设计了一种基于径向基函数(RBF)神经网络的自适应输出反馈控制方法。利用Lyapunov方法和平均驻留时间理论(ADT)保证了闭环系统所有信号是半全局一致最终有界的(SGUUB),通过数值例子仿真验证了所提方法的有效性。最后将该方法应用于带电机驱动的机械臂并进行仿真实验,仿真结果表明,机械臂轨迹跟踪误差很小,有着良好的控制精度,同时也表明所提出的控制算法能够应用于实际工程模型。

  • 单位
    石油大学机电工程学院

全文