摘要

经过深入研究近年来发展迅速的深度学习技术,并学习卷积神经网络处理视频数据的方法本文,在传统3D卷积神经网络的基础上改进了网络结构。同时,考虑到考场采用双摄像头监控系统,可从不同视角观察考生的考试行为,本文提出了基于双路的考场异常行为识别方法。该方法结合了改进的3D卷积神经网络和双摄像头的监控系统,设计了新的双路网络结构的视频特征提取器,可以提取不同视角下的考生行为特征,并将双路网络提取到的行为特征向量进行融合。通过提取正常考试行为的特征向量,在LibSVM中训练出考场行为的分类器,该分类器可以对测试视频的特征向量进行分类,由此判断测试视频中是否存在异常行为。该方法使用双路视频特征进行异常识别,在考场行为数据集中有着较高的识别正确率。

  • 单位
    北京电子科技学院