摘要
对航段截尾油耗数据进行区间估计时,数据分布的稀疏性及非正态性会导致传统基于单因素的油耗估计区间难以建立。针对上述问题,提出基于分类和沙普利加性解释(classification and Shapley additive explanations,C-SHAP)的改进分位数回归森林区间估计(quantile regression forest,QRF)方法。通过C-SHAP方法,筛选全航程和各飞行阶段特征得到最优输入特征集;采用随机过采样算法增加训练集中截尾油耗样本的权值,提高QRF模型的估计性能;通过QRF估计给定上、下限油耗条件分位数,构建估计区间。实验结果表明,该方法的特征选择合理、估计区间质量较高。
-
单位自动化学院; 中国民航大学