摘要

将深度学习模型应用至电子干扰技术来生成干扰信号具有重要的现实意义。本文将生成对抗网络(generative adversarial networks,GANs)应用于信号生成领域,对电磁扩频信号频谱数据的分布进行深度学习,并生成与其相干的干扰信号。在实验中GANs的生成器和判别器互相博弈训练,通过自适应矩估计(adaptive moment estimation,Adam)进行优化,最终训练出良好的模型,可以生成所需信号。实验结果表明,基于GANs的信号生成算法,生成的数据分布已基本具备真实数据分布普遍具有的特点,对同一信噪比的电磁频谱数据进行深度学习后,生成数据能够较为准确地学习到不同信噪比电磁频谱数据的不同特点。