摘要
文章旨在提升对偶规划显式模型(dual programming-explicit model, DP-EM)的建模和求解的境界. DPEM模型从一类变量可分离凸规划的特点出发,突破了对偶目标二阶采用近似的定势,推导得出显式的对偶目标函数;应用于ICM方法求解连续体结构拓扑优化问题时,其求解效率比对偶序列二次规划方法 (DSQP)和可移动渐近线方法 (MMA)求解效率更高.文章进一步把常见的一类显式模型抽象为普适的可分离凸规划列式,在需要满足的一些条件下,转换为DP-EM模型,并且提出4种处理方法:(1)对偶变量迭代逼近法;(2)指数函数形式的解法;(3)幂函数形式的解法;(4)基于变换的精确解法.为了进行数值验证,做了广泛的计算,限于篇幅,文章列出了5个具有代表性的算例,除了算例1属于纯数学问题,其余4个算例皆基于ICM方法,分别对于位移、应力、疲劳等约束和破损-安全的连续体结构拓扑优化问题,基于所提出的方法进行建模和求解,都显示了所提出方法的普适性及更高的求解效率.工作的意义在于:(1)深度方面,加深了结构优化对偶解法的研究;(2)广度方面,对数学规划对偶理论的发展做出了新的贡献.
- 单位