摘要
通过田间试验,对温室膜下滴灌茄子冠层叶片蒸腾速率的变化规律进行了深入研究。通过分析温室内地面温度、相对湿度、植株冠层温度、气压、水面蒸发、太阳辐射等6个环境参数与茄子蒸腾速率的综合影响关系,确定了网络拓扑结构为6-9-1。并应用MATLAB软件,选择Levenberg-Marquardt(L-M)优化算法,建立了基于Back Propagation(BP)神经网络的温室膜下滴灌茄子蒸腾速率预测模型。经模型验证得出,BP神经网络模型预测值与蒸腾速率实测值间拟合效果较好,平均相对误差为0.029 8,达到预测精度要求。该研究成果对温室膜下滴灌作物需水规律及需水量研究具有较好的参考价值。
- 单位