摘要
为实现快速准确地检测轮对踏面缺陷,针对轮对踏面噪声干扰大、传统检测算法特征融合不充分的问题,提出一种基于残差注意力的YOLO-v5列车轮对踏面缺陷快速检测方法。首先,针对噪声干扰大的问题,设计了一个残差注意力降噪模块,以有效提升模型检测准确率,并使用Grad-CAM类激活映射技术验证残差注意力模块降低噪声干扰的作用;其次,针对特征融合不充分和模型容易产生漏检的问题,使用一种双向特征金字塔特征融合模块,对主干网络提取的特征进行高效融合,从而有效地降低检测漏检率;最后,采集了数百幅轮对踏面真实缺陷图像,并与5种经典检测模型进行对比,验证了算法的优越性。试验结果表明,该算法能够达到77.9%的准确率和72.3%的召回率,同时所提算法的图像检测速度能达到125幅/秒,模型权重仅为15.1 MB。该模型能快速准确地检测出剥离和凹陷2种缺陷,可便捷地应用于实际的轮对踏面实时缺陷检测场景。
- 单位