空气质量模拟与观测机器学习NO2浓度预报

作者:黄泳熙; 朱云; 谢阳红; 李海贤; 张志诚; 黎杰; 李金盈; 袁颖枝
来源:中国环境科学, 2023, 43(12): 6225-6234.
DOI:10.3969/j.issn.1000-6923.2023.12.001

摘要

在空气质量模拟预报数据基础上,采用套索算法(Lasso)将前馈神经网络(FNN)与基于污染物浓度及气象实时观测值搭建的长短期记忆网络(LSTM)组合,形成了模拟与观测机器学习(SOML)预报模型,开展了佛山市顺德区NO2未来3d 10个镇街空气质量监测点位逐日浓度预报.结果显示:SOML3d的准确性均优于WRF-CMAQ及其它单一模型,其中第一天SOML平均绝对误差(MAE)为4.99 μg/m3,改进幅度达66.18%;SOML不同季节适用性均较强,四季预报效果均较WRF-CMAQ明显提升(MAE分别降低42.18%、42.89%、61.04%、50.91%),其中秋冬季改善幅度更好;相比WRF-CMAQ,SOML预报结果能较好反映顺德区内各站点NO2浓度实际空间分布和数值水平,有效提升了浓度预报精准度.

全文