为了提高旋转机械传动系统的安全性和可靠性,降低维护维修费用,本文研究了一种少样本信息情况下的行星齿轮箱故障诊断方法。针对故障诊断模型建立中的样本不均衡问题,通过生成对抗网络(GAN)的对抗学习机制,实现对振动信号的特征提取。训练生成器学习原始故障样本的分布特点,产生补充的故障数据样本,进而建立更加精确的GAN故障诊断模型。通过实验平台采集多种工况下的故障样本,进行故障诊断模型训练,实验表明在诊断样本信息不足的情况下,GAN故障诊断模型可以有效提高诊断精度。