摘要

准确的负荷预测在电力调度、系统可靠性和规划中起着关键作用。针对各种不确定因素造成了电力需求的波动,本文提出了一种基于EEMD-CatBoost的短期负荷预测方法。模型利用集合经验模态分解(EEMD)对非平稳原始序列进行处理,将原始电力负荷数据分解为有限个固有模态函数(Intrinsic Mode Functions,IMF)和一个残差分量,以降低负荷序列的复杂度,再将分解后的各分量分别输入到CatBoost中预测,然后将每个分量的预测值重组,得到最终的负荷预测结果。以某地的实际数据为例,综合比较了该方法与现有电力负荷短期预测技术的性能。与现有基准相比,所提出的方法得到了相当精确的结果。