部分环境信息未知下的机器人动态路径规划算法

作者:吕刚; 吕金壮; 邓军; 刘凡栋; 万施霖
来源:自动化与仪器仪表, 2022, (03): 186-190.
DOI:10.14016/j.cnki.1001-9227.2022.03.186

摘要

良好的移动机器人路径规划技术不仅可以节省大量的时间,还可以减少移动机器人的磨损和资金投入。传统A*算法只能在完整的导航环境信息已知时进行静态路径规划,而包括强化学习(Reinforcement Learning, RL)在内的元启发式算法虽然能够根据实时信息进行动态路径规划,但其参数调试费时费力,且在没有全局最优路线引导的情况下,很容易陷入局部最优解,而无法达到目的地。针对总体布局已知、障碍物分布信息未知的场景,提出了一种结合A*算法和RL中的近端策略优化(Proximal Policy Optimization, PPO)算法的动态路径规划算法。仿真实验表明,与通常的RL算法相比,该算法所需的训练期数较少,且能根据实时的障碍物信息规划出高效、安全的路径。

全文