为了提高基于MEMS惯性传感器的捷联惯性导航系统姿态解算的精度,提出了一种自适应容积卡尔曼滤波(CKF)数据融合算法。该数据融合算法将姿态四元数作为系统状态,将加速度计信息和磁力计信息作为系统观测量,对系统过程噪声矩阵和观测噪声矩阵进行实时的自适应估计,解决了因系统噪声突变引起的姿态解算精度急剧下降的问题。实验结果表明,采用自适应CKF数据融合算法比单纯基于陀螺仪的捷联姿态解算精度有明显的提高,在载体动态时测得的横滚角和俯仰角误差在1°以内,航向角误差在2°以内。