摘要

电能质量扰动现象的准确分类是电能质量领域的热门课题.提出一种基于复阻抗和支持向量机的电能质量扰动分类方法.该方法首先从UCI(University of California,Irvine)数据库中分别提取出各电能质量扰动现象(电压暂降、电压暂升、电压中断、电压振荡、电压脉冲)的实际数据,通过Hilbert变换把扰动电压信号和扰动电流信号转换为相量形式,在此基础上得到复阻抗.接着通过复阻抗提取信号特征,组成特征向量,然后应用支持向量机分类器进行训练、测试和分类.最终对UCI数据库中大量实际扰动数据进行分类,分类取得了良好效果,此效果表明该方法具有一定的应用价值.