摘要
为实现图书馆中机器人智能排架,提出一种基于卷积神经网络和混合注意力机制的书标检测模型。将DenseNet121引入YOLOv4以提高特征和梯度之间的传递效率,利用SPDC模块实现局部和全局特征融合,进而通过通道和空间混合注意力提高模型的特征表征能力。实验结果表明,模型的平均准确率、整体性能、参数量和模型大小均优于对比方法,且易于部署到嵌入式设备中实现在线检测,从而提高图书乱架治理的智能化水平。
-
单位机电工程学院; 青岛科技大学