基于时空多视图BP神经网络的城市空气质量数据补全方法研究

作者:张贝娜; 冯震华; 张丰; 杜震洪*; 刘仁义; 周芹
来源:浙江大学学报(理学版), 2019, 46(06): 737-744.
DOI:10.3785/j.issn.1008-9497.2019.06.016

摘要

针对城市空气质量监测数据缺失的问题,提出一种基于时空多视图BP神经网络的数据补全方法。采用指数移动平均、普通克里金和非凸矩阵完备作为时空多视图特征,结合映射非线性关系的BP神经网络,构建数据补全模型。以北京市36个站点2014年5月1日至2015年4月30日监测的PM2.5、PM10、NO2、CO、O3和SO26种空气污染物小时浓度为实验数据。实验结果表明,在15%缺失率下,随机缺失补全的平均相对误差为0.102~0.154,时间连续缺失补全的平均相对误差为0.161~0.271,空间连续缺失的补全平均相对误差为0.108~0.155,优于典型的单视图预测方法和多视图线性预测方法。研究成果可为城市空气质量数据补全工作提供方法支持,研究思路可为时空数据挖掘提供参考。

全文