摘要
为实现温室作物参考作物蒸散量(ET0)的准确计算和预测,利用BP神经网络对获取的数据进行非线性回归,利用思维进化算法自动寻优,进而获取BP神经网络算法中较优的权值和阈值,最终建立了基于思维进化算法优化BP神经网络的参考作物蒸散量预测模型(MEA-BP)。结果表明,优化后的BP神经网络的最大相当误差有原来的13%下降到了7.2%,平均相对误差由原来的6.8%下降到了3.4%。研究了在气象数据缺失情况下模型的预测效果,当模型输入参数为4个时,平均绝对误差约为在0.2 mm(预测值约3~6 mm),模型的有效系数和相关系数基本在0.9以上;当模型输入参数为3个时,平均绝对误差约为0.25 mm,模型的有效系数和相关系数基本在0.8以上。因此,在输入参数保证3个及以上,同时包含有显著影响因子有效光照时长时,该模型的整体计算精度以及整体的实用性较好,能够为作物灌水量的预测提供参考。
-
单位西安交通大学机械制造系统工程国家重点实验室