摘要
刀具在生产的过程中,由于人员、机器、环境等多方面原因,刀具的表面会出现各种缺陷,如划痕、碰撞凹坑、涂层剥落和边缘豁口;这些缺陷会严重影响刀具的质量和外观,对于刀具的缺陷检测,目前主要采用人工目检的方式,人工检测方法效率和准确率都比较低;为解决上述问题,提出一种刀具缺陷的自动化检测及分类算法;针对刀具图像的预处理,提出了一种基于双边滤波的降噪方法和基于差分的对比度增强算法;对于刀具的缺陷检测任务,提出了基于图像差分的缺陷检测算法;对于缺陷的分类任务,提出了一种基于SVM的分类算法,即通过提取缺陷区域的形状、纹理等特征来训练SVM分类器;最后对提出的缺陷检测及分类算法进行实验,结果表明算法的缺陷检出率达97.2%,分类准确率可达94.3%;算法能够很好地满足工业需求,可以替代人工实现刀具缺陷的自动化和高效率检测。
-
单位机电工程学院; 苏州大学