摘要

在城市轨道交通车辆受电弓日常检修过程中,大量检修及故障数据未得到合理利用。针对计划检修已不能满足目前受电弓检修要求的问题,提出了一种基于主元分析和概率神经网络结合的故障诊断方法。该方法运用主元分析法对受电弓日常检修中的初始特征参数进行降维,将降维后特征参数输入到概率神经网络模型中进行故障诊断,判定受电弓故障模式。仿真结果表明,该诊断方法耗时短、正确性高。

  • 单位
    江苏理工学院

全文