摘要

针对传统纱线质量的正演、反演模型中存在的收敛速度慢、精度低等问题,以及标准粒子群算法存在陷入局部极值的缺陷,提出一种粒子群遗传混合算法,使用该算法优化BP神经网络的权值和阈值并建立纱线条干正演模型。在此基础上,以纱线条干CV值为对象构建了粒子群遗传算法反演模型。使用历史生产数据对生产过程参数进行反演。结果表明:各生产过程参数反演结果的平均相对误差均低于4%。认为:该反演方法具有较高的可行性与准确性。