摘要

针对传统RBF网络板形模式识别方法存在抗干扰能力差、识别精度有限以及缺乏处理不确定性信息的能力等问题,将云模型引入RBF神经网络,提出一种新型板形识别模型。MATALB仿真结果表明:新型GA-CRBF网络正确识别出板形缺陷,识别精度比传统的RBF网络提升73%,抗干扰性也提升了83%。将GA-CRBF网络写入DSP芯片中运行后,正确识别出缺陷板形,验证了其工程应用的可行性,为神经网络推广应用到实际工程中提供了依据。