摘要

杂草是造成作物减量、增加生产成本和降低经济增益的重要因素之一。传统杂草识别技术识别效率低,难以适应复杂环境。随着人工智能技术特别是深度卷积神经网络(Deep Convolutional Neural Networks, DCNN)的快速发展,其在杂草识别中的应用愈趋广泛,成为了最具发展潜能的识别方法。不同于以往杂草识别方法分类进行研究现状的综述,从研究对象的角度出发,分别对玉米等农作物、蔬菜等经济作物和草坪进行综述,并将识别方法集中于深度学习(Deep Learning, DL)等人工智能领域。研究中包括但不限于图像分割、杂草预处理、检测、定位及分类。查阅文献发现玉米是农作物中主要的研究对象,经济作物中则是生菜与甜菜,草坪研究起步虽晚但发展迅速,在上述作物的杂草识别中深度学习方法较传统识别方法均取得了更高的准确率及精度,更适于复杂环境中的检测。

全文