摘要

【目的】叶绿素含量高低反映植被的健康状况与光合能力。研究准确、有效地将冠层影像反演为叶绿素含量的技术参数,以便经济快速、实时地监测作物生长状况。【方法】田间试验于2018—2020年在内蒙古阴山北麓马铃薯主产区进行,设置氮肥梯度处理,在马铃薯块茎膨大期和淀粉积累期,测定试验地马铃薯植株SPAD值,通过线性关系将其转化成叶绿素含量。利用无人机为平台搭载S185成像光谱仪获取马铃薯试验区高光谱影像,并从中提取马铃薯冠层光谱反射率。将3年田间试验所获取的125个样本点数据按80%、20%的比例随机划分为训练集与验证集。用训练集数据建立了8个比率、归一化光谱指数,通过波段优化算法建立优化光谱指数和马铃薯关键生育期叶绿素含量的相关性与估测模型,并用验证集数据检验所建立模型的精度,最后利用所构建的估测模型制作马铃薯叶绿素含量分布图。【结果】根据训练集数据,马铃薯植株叶绿素含量分布范围在10.58~23.14 mg/g,平均叶绿素含量为19.80 mg/g,变异系数为14.9%;根据验证集数据,马铃薯植株叶绿素含量分布范围在12.80~23.73 mg/g,平均为19.59 mg/g,变异系数为17.0%。基于绿光波段建立的叶绿素光谱指数(CIgreen)和归一化光谱指数550 (ND550)均与马铃薯叶绿素含量具有较好相关性(R2分别为0.48、0.61),但作物种类及生育时期的影响降低了估测的准确性。通过优化波段586、462 nm和586、498 nm计算的优化比率光谱指数(RSI)和优化归一化光谱指数(NDSI)能够明显提高模型准确性,具备良好的线性拟合效果,决定系数R2分别由0.48和0.61提高到0.82和0.83。经验证后,估测模型预测值与实测值接近1∶1线,决定系数R2分别为0.77和0.79,均方根误差RMSE较低。通过反演马铃薯叶绿素含量分布图可知,优化光谱指数(NDSI)模型反演效果较好,叶绿素含量分布范围为18~21 mg/g,与实测值相符合。【结论】本研究优化光谱指数RSI和NDSI最佳敏感波段分别为586、462和586、498 nm,此波段范围内RSI和NDSI与马铃薯关键生育期叶绿素含量相关性最优,通过波段优化算法重新构建的优化光谱指数预测模型可靠性及精度显著高于已有光谱指数,决定系数分别为0.82和0.83,且验证效果较好。应用两种光谱指数对研究区高光谱影像进行叶绿素反演估测,生成的田间马铃薯叶绿素含量分布图显示优化光谱指数NDSI估测效果最好,为光谱指数估测马铃薯关键生育期叶绿素含量提供了理论支持。