摘要
针对轴承振动信号的不确定性和非平稳性以及BP神经网络学习算法收敛速度慢、稳定性差等问题,提出了基于云模型和集成极限学习机的滚动轴承故障模式识别方法.将经预处理之后的信号进行云化,产生滚动轴承在不同状态下的信号云;提取出决定信号云分布的期望、熵和超熵三个参数作为表征轴承状态的特征量并依此构造出原始的轴承状态数据集;再将故障特征数据集经归一化处理后送入集成极限学习机进行识别.研究结果表明:云-集成极限学习机方法可以有效地实现轴承故障模式识别,与传统神经网络识别方法相比,该方法拥有更高的识别准确率和稳定性,并且集成极限学习机在抗噪性方面有较好的表现.
-
单位机电工程学院; 兰州理工大学