摘要
针对树木根系的探地雷达(Ground Penetrating Radar,GPR)检测图像复杂、解译困难、自动化程度低且精度不高等问题,该研究提出了一种基于YOLOv3的树根自动识别和参数估计的方法。通过不同的根预埋试验分析了根直径、掩埋深度和朝向对根系识别和预测的影响,对比评估了在复杂现场环境下该方法与商业软件常用的阈值分割方法的识别效果。结果表明算法可实现根系自动提取和双曲线顶点定位,对根双曲线的识别准确率和召回率分别达到了96.62%和86.94%,根系参数预测的总平均相对误差在10.57%以内。该方法具有较高的识别准确率和鲁棒性,可实时地对树木根系进行检测并进行根系参数预测,对树木根系无损检测具有重要意义。
-
单位北京林业大学; 北京市颐和园管理处