摘要
通信信号的调制方式识别是通信侦察、频谱监测的重要工作内容之一,提出一种利用深度学习提取信号时频图纹理信息的分类方法。该方法利用不同调制方式在时频图细节上的微弱差别,并使用卷积神经网络提取图像纹理特征,最终输入SOFTMAX分类器进行分类。结果表明,该方法在大样本条件下,可取得良好的分类效果。与传统基于特征参数的支持向量机分类方法或前馈神经网络方法相比,其提取特征更优、分类效果更好,同时减少了人工设计特征参数的工作量和不确定性。
-
单位空军工程大学信息与导航学院