摘要

利用坦克驾驶模拟器进行模拟训练是提高装备操作技能的重要方法。针对以往模拟训练忽视训练数据采集分析和提高训练质量的问题,提出采用支持向量机(SVM)对坦克驾驶模拟训练结果进行分析的方法。为了解决SVM参数选取难的问题,提出一种自适应粒子群优化(APSO)算法对SVM参数进行优化选择,设计动态权重参数并赋予相关惯性,实现粒子动态自适应。引入多位置查询机制和极值点信息以维持不同粒子平衡点的多样性,通过迭代选择与优化目标函数实现对参数的自动寻优。基于APSO算法的支持向量机(SVM-APSO)应用到某型坦克驾驶模拟器的训练结果分析中,结果表明SVM-APSO能克服多维影响因素对训练成绩分类带来的不利影响,实验结果在精度和时间上都有明显优势,验证了SVM-APSO在坦克驾驶模拟训练结果分析中应用的可行性与有效性。

  • 单位
    中国人民解放军装甲兵工程学院