摘要

为快速准确获取土壤含水率信息,便于农业精准灌溉,本研究引入支持向量机算法(SVM)对4种不同干湿交替处理下超声波速度与土壤含水率进行拟合分析和回归训练优化,构建基于超声波速度的土壤含水率预测模型。结果显示,与传统的烘干法相比较,利用该模型在田间验证土壤含水率,平均相对误差为1.5%左右。研究结果表明,基于SVM模型构建的超声波速度-土壤含水率预测模型能够较好地描述被研究区域内土壤含水率,可为利用超声波特性实现对农田土壤水分的持续监测提供参考。