摘要

随着数字图像处理技术的高速发展,图像恢复被广泛应用于医学领域、军事领域、公共防卫领域及农业气象领域.本文综合TVL1、ROF、STVL1(Squares TVL1)、SHI模型,提出了非凸非光滑关于脉冲噪声去除模型,并使用变量分离技术的ADMM算法对模型进行求解,通常情况下,基于梯度的方法不适合非光滑优化,半二次(halfquadratic)和重权最小二乘算法(IRLS)在零点不可微分情况下不能应用到非光滑函数上, Graduated NonConvexity(GNC) algorithms跟踪非光滑和非凸的最小值沿着一系列近似的非光滑能量函数的势能,需要考虑其计算时间.为了处理模型的非凸非光滑项,本文应用多阶凸松弛方法对模型的子问题进行求解,虽然该方法仅导致原始非凸问题的局部最优解,但该局部解是对初始凸松弛的全局解的改进.此外,因为每个阶段都是凸优化问题,所以该方法在计算上是高效的.利用遗传算法对模型参数进行选择,通过在不同图片及不同噪声上的大量实验表明,该模型的鲁棒性、运行时间和ISNR、PSNR都优于其他三个模型.并且该模型能够保持图像的局部信息具有更好的可视化质量.

全文