摘要

针对变分模态分解(VMD)需要人为确定输入参数的问题,提出了一种参数自适应VMD(APVMD)方法,其通过粒子群(PSO)算法优化VMD的输入参数。使用APVMD结合切片谱的方法,对双转子航空发动机振动正常和异常状态下的实测弹性支承应变信号进行分析。分析结果表明,APVMD方法可以自适应地实现对实测弹性支承应变信号的分解;当发动机振动正常时,高低压转子弹性支承应变信号的APVMD模态分量中只存在高低压转子的1倍频和2倍频成分;当发动机振动异常时,低压转子弹性支承应变信号的APVMD模态分量除了包含低压转子的1倍频及倍频成分,还包含高压转子的1倍频和分频成分,以及高低压转子间的调制频率和组合频率成分;在高压转子弹性支承应变信号的APVMD模态分量中,除了高压转子的1倍频和2倍频成分,还存在高压转子的分频成分。