摘要
针对滑坡监测中的多源异构数据融合问题,结合互信息(mutual information, MI)、改进粒子群优化算法(improved particle swarm optimization, IPSO)和长短期记忆神经网络(long short-term memory,LSTM),提出一种新的多源异构监测数据融合方法。该方法基于互信息对影响滑坡变形的多个环境因子变量进行筛选,将筛选后的环境因子变量作为LSTM模型的输入变量,以滑坡累计位移量数据作为期望输出数据,并通过改进的粒子群寻优方法对模型进行参数寻优,获取模型的最优参数组合,进一步提高融合模型的预测精度。采用中国贵州省六盘水市水城县发耳滑坡的全球导航卫星系统(global navigation satellite system,GNSS)实测数据进行实验,结果表明:基于互信息和IPSO-LSTM的数据融合算法适用于具有多源异构监测数据的滑坡变形预测,且基于互信息的环境因子变量筛选方法优于Pearson相关系数筛选方法,经改进粒子群算法参数寻优后,融合模型的均方根误差(root mean square error,RMSE)达到2.6 mm,平均绝对误差达到1.7 mm,拟合优度达0.994。
-
单位西部矿产资源与地质工程教育部重点实验室; 长安大学; 地理信息工程国家重点实验室