摘要
准确可靠的电池健康状态估计是保证锂离子电池安全运行的关键,同时为失效预警提供参考。提出一种适用于电池单体和电池组的健康状态估计通用方法。首先,提出基于局部充放电数据的电池单体高效健康因子提取方法,保证健康因子和容量的高相关性和实现健康因子的在线可获取性。其次,提出考虑电池组容量衰减和不一致性的特征生成策略,利用主成分分析获取融合特征,利用双时间尺度滤波和电池组等效电路模型拓宽特征提取方法的应用范围。然后,基于高斯过程回归算法框架,考虑健康因子和容量衰减的整体关系和局部变化提出改进的高斯核函数提高估计精度和可靠性。最后,利用多个试验数据集验证算法在不同应用条件下的泛化能力。估计结果表明,对恒流放电工况的电池单体估计误差小于1.28%,在动态变温条件下电池单体估计误差小于1.82%;串联电池组的验证结果表明在各种应用场景下估计误差均小于1.43%。提高了电池系统健康状态估计的精度以及在广泛应用场景下的适应性。
-
单位重庆大学; 机械传动国家重点实验室