摘要

针对工业过程中存在的动态特性和多模态特性问题,提出一种动态加权差分主成分分析法(dynamic weighted differential principal component analysis,DWDPCA)。首先通过设置合理的时间窗描述系统的时序特性;其次对时间窗内的样本寻找第一近邻和第一近邻的近邻集,使用加权差分法对数据进行处理,解决数据中心漂移问题;最后利用处理好的数据建立主成分分析(principal component analysis,PCA)模型进行故障检测。该方法可解决数据动态、中心漂移问题。使用该方法对数值例子和TE(tennessee eastman)过程进行故障检测验证所提出方法的有效性。