摘要

脑皮层下结构分割问题是神经科及其他相关疾病计算机辅助诊断和治疗的基础。通过分割和分析核磁共振图像中的脑结构,可以对自闭症谱系障碍、脑卒中、脑肿瘤等疾病进行早期诊断和治疗。为解决精准脑结构分割的问题,基于深度学习基本理论,提出一种DenseMedic网络的核磁共振图像脑皮层下结构的分割算法。首先,OreoDown方法通过较早地增大卷积核的步长增大特征感受野的增长速度,并使用不变尺寸的卷积层夹心式地恢复网络深度,使速度的增加带来有效的感受野增加;其次,DenseMedic使用Dense Net的思想实例化OreoDown框架,通过密集连接的特征提取操作来获取多尺度的上下文信息;最后,在各层中使用混合空洞卷积进一步扩大感受野,解决特征感知过于粗糙的问题。采用Dice相似度系数(DSC)、交并比(IoU)、95%Hausdorff表面距离(HSD95)和平均表面距离(ASD) 4个指标,评价神经网络的分割性能。在公开的IBSR数据集的18例图像上进行实验,算法的4个指标分别达到89.2%、80.7%、1.982和0.882;在公开的MBBrainS18数据集的7例图像上的实验显示,算法的4个指标分别达到88.7%、79.8%、1.249和0.570。实验表明,所提出的算法使脑结构的分割结果与真实结构在区域上有更多的重叠,在轮廓上更加相似,可以更好地完成各个脑皮层下结构的分割。在临床应用中,对脑皮层下结构的精准分割将有助于准确测量相关疾病诊断的关键指标,并实现快速的计算机辅助治疗。

  • 单位
    中国医学科学院北京协和医学院; 医学分子生物学国家重点实验室