摘要

输电线路巡检是电网持续稳定供电的保障,其目的是对电力线、绝缘子、电力杆塔、防振锤等线路设备进行状态检测和故障诊断,同时观测电力线周围潜在隐患。深度学习的发展为输电线路巡检提供了有效手段,与传统目标检测方法相比,深度学习方法能更有效地实现航拍图像中电力设备的识别及缺陷检测。该文综述近十年来基于深度学习的输电线路视觉检测方法的研究进展。首先,概述适用于输电线路巡检的深度卷积神经网络,包括分类网络、检测网络、语义分割网络,考虑到开发的深度学习网络模型便于在移动设备上应用,另外阐述轻量化网络;然后,重点阐述基于深度卷积神经网络的输电线路巡检图像数据目标检测;随后介绍7个电力设备数据集以及性能评价指标;最后,指出基于深度学习的输电线路巡检图像数据视觉检测方法目前存在的问题,并对进一步的工作进行展望。