摘要

研究了三维可压缩Navier-Stokes-Cahn-Hilliard方程组Cauchy问题解的适定性,该方程组描述了具有扩散界面的非混相两相流的流动。对于初始值在相分离附近的小扰动,运用能量方法结合Schauder不动点定理,证明了该问题全局强解的存在唯一性。

全文