摘要
为提高感应电机(IM)伺服驱动系统的控制性能,抑制电机参数变化、外部扰动和未建模动态等不确定性因素对系统的影响,提出一种基于径向基神经网络(RBFN)的智能动态滑模控制(IDSMC)方法。首先利用动态滑模控制(DSMC)方法削弱抖振,提高系统的跟踪精度。但由于DSMC中切换函数所需的不确定性边界值无法获知,因此将RBFN不确定性估计器与DSMC相结合,设计IDSMC方法进一步提高系统的鲁棒性。RBFN可通过自适应学习算法估计不确定性因素值并在线训练调整网络参数,以确保系统在不确定性因素存在时仍能高性能运行。最后,通过TMS320C31 DSP控制核心验证所提方法的有效性。实验结果表明,IDSMC不但可以保证系统精准的响应能力,还有较强的鲁棒性。
-
单位包头铁道职业技术学院; 吉林铁道职业技术学院