摘要

The Tensor Product (TP) model transformation is a recently proposed techniquefor transforming given Linear Parameter Varying (LPV) state-space models into polytopicmodel form, namely, to parameter varying convex combination of Linear Time Invariant(LTI) systems. The main advantage of the TP model transformation is that it is executablein a few minutes and the Linear Matrix Inequality (LMI)-based control design frameworkscan immediately be applied to the resulting polytopc models to yield controllers withtractable and guaranteed performance. Various applications of the TP modeltransformation-based design were studied via academic complex and benchmark problems,but no real experimental environment-based study was published. Thus, the main objectiveof this paper is to study how the TP model transformation performs in a real world problemand control setup. The laboratory concept for TP model-based controller design,simulation and real time running on an electromechanical system is presented.Development system for TP model-based controller with one hardware/software platformand target system with real-time hardware/ software support are connected in the uniquesystem. Proposed system is based on microprocessor of personal computer (PC) forsimulation and software development as well as for real-time control. Control algorithm,designed and simulated in MATLAB/SIMULINK environment, use graphically orientedsoftware interface for real-time code generation. Some specific conflicting industrial tasksin real industrial crane application, such as fast load positioning control and load swingangle minimization, are considered and compared with other controller types.

全文